
SHEAF SPACES AS KAN EXTENSIONS

YOYO JIANG

Abstract. We motivate the explicit construction of the sheaf space as a gluing

of stalks by first introducing its universal property, which we will consider as
an example of a more general class of constructions, that being Kan extensions
on presheaf categories. We will use abstract categorical results to prove the

equivalence between the category of sheaves and étale spaces and deduce some
useful consequences.

Contents

1. Motivation 1
2. Kan Extensions 2
3. Presheaves and Bundles 3
4. Sheaves and Étale Spaces 6
5. Useful Consequences 8
References 9

1. Motivation

Let X be a topological space. Given a bundle p : E → X, we can define a presheaf
on X by assigning to each open set U ⊆ X the set of sections

Γp(U) := {s : U → E continuous function | ps = 1X}.
We can observe the functoriality of this construction as follows: first, we notice

that a bundle over X is just an element of the slice category Top /X. The slice
category admits an obvious embedding from the category of open sets of X, which
we denote as Op(X), by sending any open U ⊆ X to the open inclusion map U ↪−→ X.
Call this embedding J : Op(X) → Top /X. Now, we see that

Γp = Top/X
(
J(−), E

p−→ X
)

gives the correct assignment on both open sets and inclusion relations, so it is indeed
a presheaf. In addition, the assignment p 7→ Γp is functorial from Top /X → PshX,
as it is the restricted Yoneda embedding

Γ = Top/X(J,−) =
(

Top/X
よ
↪−→Set(

Top/X)op J∗

−−→ SetOp(X)op = PshX
)
. (1.1)

A natural question to ask is whether we can find some kind of inverse functor
which encodes any presheaf as the section of some bundle. It turns out that this is
partially possible: we can find an adjoint to Γ which associates to each presheaf an
étale space, and this adjunction restricts to an equivalence on the full subcategory
of sheaves. Typically (in an algebraic geometry textbook, for instance), this adjoint
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is defined manually by gluing together stalks. In this document we will instead
introduce this adjunction using the general framework of Kan extensions, and then
show that the usual construction does satisfy the correct universal property.

2. Kan Extensions

We begin with a quick review of Kan extensions. For a detailed treatment, see
Chapter 1 of [Rie14].

Definition 2.1. Let F : C → E and K : C → D be functors. A left Kan extension
of F along K is a functor LanK F : D → E with a natural transformation η : F ⇒
LanK F ◦K

C E

D

F

K LanK F

η

such that for any functor G : D → E , natural transformations γ : F ⇒ GK factor
uniquely through η as follows: (denoting L := LanK F for clarity)

C E

D

F

K G

γ =

C E

D

F

K

L

G

η

∃!

A functorH : E → F preserves the Kan extension if the composite (H LanK F,Hη)
is a Kan extension of K along HF . Suppose E is locally small. A Kan extension
in this setting is pointwise if it is preserved by all (contravariant) representable
functors E(−, x) : E → Setop for x ∈ E .
Remark 2.2. Dually, one can define right Kan extensions (see [Rie14], Definition
1.1.1), but we will not be using them for the rest of this exposition.

Proposition 2.3. A left Kan extension is pointwise if and only if it can be computed
by the formula

LanK F (d) =

∫ c∈C
D(Kc, d) · Fc

for all d ∈ D. In particular, this coend always defines a left Kan extension when it
exists (for instance, when E is cocomplete). Equivalently, the coend is described as
the colimit

LanK F (d) = colim(K ↓ d
Πd

−−→ C F−→ E).
Proof. See [Rie14], Theorem 1.2.1 and 1.3.5. □

Theorem 2.4 (density). For a small category C, the identity functor (and natural
transformation) defines the Kan extension of the Yoneda embedding along itself:

C SetC
op

SetC
op

よ

よ 1∼=Lany F
1F

In particular, for any P ∈ SetC
op

, we have an expression of P as a coend/colimit

P ∼=
∫ c∈C

Pc · C(−, c).
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Proof. See [Rie16], Theorem 6.5.7 and 6.5.8. □

Corollary 2.5. Let C be small, and let E be locally small and cocomplete. Then,
the pointwise left Kan extension exists and defines a genuine extension of F along
y. This means that that Lany F ◦ y = F , and the universal natural transformation
is the identity:

C E

Psh C

F

よ Lany F
1F

In addition, Lany F admits a right adjoint, defined by R := E(F,−).

Proof. See [Rie16], Remark 6.5.9. □

3. Presheaves and Bundles

Now, we are ready to construct the promised adjunction between presheaves and
bundles. Applying Proposition 2.5 to the previously defined embedding J that sends
an open set of X to the inclusion map regarded as a bundle, we have the following
diagram

OpX Top /X

PshX

J

よ
R

L1J ⊣ (3.1)

where L is a pointwise left Kan extension of J along y, sending a presheaf P to

L(P ) =

∫ U∈OpX

PshX(yU, P ) · (U ↪−→ X)

∼=
∫ U∈OpX

PU · (U ↪−→ X) (3.2)

by the Yoneda lemma. In addition, we observe that R as defined in Proposition 2.5
is exactly the functor Γ = Top/X(J,−) from equation (1.1) as a formal consequence of
the universal property of the Kan extension. Let’s now give an explicit construction
for the coend in (3.2).

3.1. Construction of the Sheaf Space. We will use a general fact about slice
categories to help us construct colimits in the bundle category Top /X.

Proposition 3.3. For any category C and any c ∈ C, the forgetful functor Π: C/c →
C strictly creates colimits and connected limits.

Proof. See [Rie16], Proposition 3.3.8. □

Hence, to construct the bundle L(P ), we can just consider the total space (which
we call the sheaf space of P )

ΛP := ΠL(P ) =

∫ U∈OpX

PU · U ∈ Top (3.4)

without worrying about the bundle map, which will be strictly created. Let’s unpack
the universal property of this coend. For any topological space Z, a map

ϕ :

(∫ U∈OpX

PU ·

)
U → Z
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is the same as a cowedge, or a collection of morphisms {ϕU : PU · U → Z}U∈OpX

such that for all i : U ↪−→ V ∈ OpX, the diagram

PU · U

PV · U Z

PV · V

ϕUi∗·U

PV ·i ϕV

commutes. We can use the universal property of each PV ·U to simplify this further.
Recall that PV · U is the coproduct of copies of U indexed by sections t ∈ PV .
Hence, the map ϕU : PU ·U → Z is the same as a set of maps {ϕU,s : U → Z}s∈PU ,
and the commutativity condition becomes the conditions that t|U = s and the outer
square in the diagram

U

PU · U

U PV · U Z

PV · V

V

ιs
ϕU,s

ϕU

ιt

i∗·U

PV ·i ϕV

ϕV,tιt

for all s ∈ PU and all t ∈ PV such that t|U = s. To summarize, we have the
following proposition:

Proposition 3.5. A cowedge from P (−) · (=) to Z is given by a set of morphisms
{ϕU,s : U → Z}U∈OpX,s∈PU such that for all V ∈ OpX, all t ∈ PV and all U ⊆
V ∈ OpX, the diagram

U V

Z
ϕU,t|U ϕV,t

(3.6)

commutes. A coend is an object with a set of initial such maps.

By the cocompleteness of Top, our desired coend exists, but we will give an
explicit construction that is useful in an algebraic geometry setting. We will need
the definition of the stalk, which we recall now.

Definition 3.7. Let P be a presheaf on X. The stalk of P at a point x ∈ X is the
set

Px := colim
x∈U

PU,

which can be described explicitly as the quotient

Px
∼= {(U, s) | U ∈ OpX such that x ∈ U, s ∈ PU}/ ∼



SHEAF SPACES AS KAN EXTENSIONS 5

with (U, s) ∼ (V, t) if and only if there exists an open set W ⊆ U ∩ V containing x
such that s and t agree on W . We will denote such an equivalence class by [U, s]x,
and call it the germ of s at x. This description comes from the fact that the indexing
category of the colimit is filtered (see [MM94], beginning of chapter II.5 for details).

We take the underlying set of ΛP to be the disjoint union

ΛP :=
∐
x∈X

Px.

For any open set U ⊆ X and any section s ∈ PU , we define a map ṡ : U → ΛP by

ṡ(x) := [U, s]x ∈ Px for all x ∈ X,

and we topologize ΛP by taking the finest topology with respect to ṡ for all opens
U ⊆ X and all sections s ∈ PU .

Lemma 3.8. A base of topology for ΛP is given by

BP := {ṡU | U ∈ OpX, s ∈ PU}.

That is, the open sets of ΛP are unions of sets in BP .

Proof. Since ΛP has the finest topology with respect to all ṫ where t ∈ PV for some
V ∈ OpX, a subset W ⊆ ΛP is open if and only if ṫ−1W ⊆ V is open for all ṫ,
which is true if and only if ṫ−1W ∈ OpX. We wish to show that this occurs if and
only if W is a union of ṡU ’s.
(=⇒) Observe that any [U, s]x = ṡx ∈ W is contained in ṡ(ṡ−1W ) ⊆ W , which is in
our desired form since ṡ−1W is open by hypothesis.
(⇐=) Since preimage preserves unions, it suffices to show that ṫ−1ṡU ⊆ V is open
for all U, V ∈ OpX, all s ∈ PU and all t ∈ PV . Observe that x ∈ ṫ−1ṡU if and
only if ṫx ∈ ṡU , but since ṫx ∈ Px we then have ṫx = ṡx, or [V, t]x = [U, s]x. We
then have an open neighborhood x ∈ W ⊆ U ∩ V on which t and s agree on W ,
which then means ṫ and ṡ agree, so W ⊆ ṫ−1ṡU as desired. □

Now we show that ΛP does indeed have the desired universal property.

Proposition 3.9. The construction ΛP satisfies universal property (3.4), that is

ΛP
∼=
∫ U∈OpX

PU · U ∈ Top .

Proof. We have an obvious candidate for the morphisms defining the universal
cowedge into ΛP , the maps ṡ : U → ΛP , which clearly satisfy (3.6). We want to show
that any cowedge defined by {ϕU,s : U → Z}U∈OpX,s∈PU factors uniquely through
these maps:

U ΛP

Z

∀ṡ

∀ϕU,s

∃!ϕ

By the commutativity of the diagram, ϕ necessarily sends any [U, s]x = ṡx ∈ ΛP

to ϕU,s(x), so we have uniqueness. To show existence, we need to show that ϕ is
well defined and continuous. By the universal property of the finest topology, ϕ
is continuous if and only if each composite ϕ ◦ ṡ = ϕU,s is continuous, which we
have by our hypothesis. Suppose [U, s]x = [V, t]x ∈ ΛP are two representatives for a
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germ. Then, there exists some x ∈ W ⊆ U ∩ V on which s and t agree, and hence
the diagram

W

U V

Z

ϕW,s|W =t|W

ϕU,s ϕV,t

commutes using (3.6), and ϕ([U, s]x) = ϕ([V, t]x) is well-defined. □

Using Proposition 3.3, we see that the coend bundle map p : ΛP → X is given by
the factorization

U ΛP

X

ṡ

∃!p

which sends [U, s]x = ṡx to x. In other words, p is the projection map that sends
each stalk Px to x.

To summarize, we have the following desription for the adjunction in (3.1): (note
that we are abusing notation to write Λ for the bundle as well as the total space)

PshX Top /X

Λ

Γ

⊣

(3.10)

In the next section, we will show that this adjunction restricts to an equivalence
between the full subcategories of sheaves and étale spaces.

4. Sheaves and Étale Spaces

An immediate consequence of Proposition 3.8 is that each ṡ is open. In addition,
the bundle map p : ΛP → X is a local homeomorphism, or étale in the sense that
for all e ∈ ΛP , there exists an open neighborhood e ∈ V ⊆ ΛP such that pV ⊆ X

is open and the restriction p|V : V
∼=−→ pV is a homeomorphism. To see this, let

e = [U, s]x be a choice of a representative for the equivalence class, and observe that
[U, s]x ∈ ṡU is an open neighborhood that is mapped homeomorphically to U ⊆ X
under p with the inverse being ṡ.

Proposition 4.1. Let η and ϵ denote respectively the unit and counit for the
adjunction (3.10), with components

P
ηP−−→ ΓΛP ∈ PshX

ΛΓf Y

X

ϵf

f
∈ Top /X

for presheaves P and bundles f : Y → X. Then, ηP is an isomorphism if and only
if P is a sheaf, and ϵf is an isomorphism if and only if f is étale.

Proof. First, we note that the essential image of Γ lands in sheaves since we can glue
continuous functions between topological spaces: let U =

⋃
Ui be an open cover,

and let si ∈ Γf (Ui) be sections si : Ui → Y that agree on intersections Ui ∩Uj . The
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glued section s : X → Y by s(x) := si(x) is then well-defined and continuous, since

the preimage of any open W ⊆ Y is s−1(W ) =
⋃

s
−1

i (W ). Hence, ΓΛP is a sheaf,
and so is P if ηP is an isomorphism.

Now suppose that P is a sheaf. We wish to show that ηP is a natural isomorphism,
which means that for each U ∈ OpX, the component ηPU : PU → ΓΛPU ∈ Set is
bijective. One can check using the proof of Proposition 2.5 that the unit map sends
an (abstract) section s ∈ PU to the induced (actual) section ṡ : U → ΛP ∈ ΓΛPU .
To show injectivity, let s, t ∈ PU such that ṡ = ṫ. Then, for all x ∈ U , we have

ṡx = ṫx ⇐⇒ [U, s]x = [U, t]x ⇐⇒ ∃x ∈ Vx ⊆ U open such that s|Vx = t|Vx ,

and by separability on the cover U =
⋃

Vx we have s = t.
To show surjectivity, let h ∈ ΓΛPU be a section h : U → ΛPU . For every x ∈ U ,

choose a representative hx = [Ux, sx]x. By Lemma 3.8, each ṡxUx is open in ΛP ,
and by the continuity of h there exists open neighborhoods x ∈ Vx ⊆ Ux for each
x ∈ U such that hVx ⊆ ṡxUx, which means that for all y ∈ Vx, hy is in both Py and
ṡxUx. Since ṡx maps each z ∈ Ux to something in Pz, we have

Py ∩ ṡxUx = {ṡxy} =⇒ hy = ṡx(y).

Hence, for all x, y ∈ U , ṡx and ṡy agree with h and therefore with each other on
the intersection Vx ∩ Vy. We again can then on the cover U =

⋃
Vx to obtain an

abstract section s ∈ PU that restricts to sx on Vx, whose induced map ṡ is equal to
h since the restriction of the continuous maps ṡ|Vx = ṡx|Vx (equality by naturality)
is locally equal to h, allowing us to apply gluing on ΓΛP .

Finally, we would like to show that if the bundle f : Y → X is étale, then ϵf is
an isomorphism (the reverse direction is given by the fact that ΛP is étale over X).
Again, check using Proposition 2.5 that ϵf sends a germ [U, s]x ∈ ΓΛP

to sx ∈ Y ,
where open sets U ⊆ X and sections s : U → Y . We define an inverse to ϵf by
considering the inverses to the local homeomorphisms. For all y ∈ Y , let y ∈ Vy ⊆ Y
be an open neighborhood that is mapped homeomorphically onto fVy with inverse

sy, and define ϵ−1
f (y) := ṡyf(y), noting that the definition is independent of the

choice of Vy and sy (two choices will agree on their intersection since they both define
inverses to f). For the same reason, sy and sz agree on f(Vy ∩ Vz) for any y, z ∈ Y .

We verify that ϵ−1
f is continuous: for any U ⊆ X open and any section s : U → Y ,

we have y ∈ ϵ−1
f (ṡU) if and only if ṡyf(y) = ṡf(y). Take the open neighborhood

f(y) ∈ W ⊆ fVy ∩U on which the germs agree, and consider y ∈ f−1W ⊆ Vy which

serves as an open neighborhood around y in ϵ−1
f . □

Proposition 4.2. Let C D
L

R

⊣ be an adjunction with unit η and counit ϵ.

Let C0 ⊆ C be the full subcategory of fixed points of the monad asscociated to the
adjunction. Similarly, let D0 ⊆ D be the full subcategory of fixed points of the
comonad. Then, the adjunction restricts to an adjoint equivalence between C0 and
D0.

Furthermore, if the objects in the essential image of L and R are fixed points,
then the inclusion C0 ↪−→ C is reflective with reflector (left adjoint) RL, and dually,
D0 ↪−→ D is coreflective with coreflector LR.

Proof. First, we verify that the images of fixed points are fixed points using the trian-
gle identities: for any c ∈ C0, we note that ϵLc defines an inverse to the isomorphism
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Lηc, so it is necessarily also an isomorphism (dually, ϵRd is an isomorphism for all
d ∈ D0). Then, observe that by definition, the unit and counit being isomorphisms
on fixed points means that the adjunction restricts to a adjoint equivalence C0 ≃ D0.
Finally, the reflectivity statement is given by the following composition of natural
isomorphisms: for all c0 ∈ C0 and all c ∈ C,

C(c, c0) ∼= C(c,RLc0) (fixed point)

∼= D(Lc, Lc0) (adjunction)

∼= C(RLc,RLc0) (equivalence)

∼= C(RLc, c0) (fixed point)

and the dual statement follows analogously. □

Finally, combine Propositions 4.1 and 4.2 and we have the following results:

Corollary 4.3. The adjunction (3.10) restricts to an adjoint equivalence between
the full subcategories of sheaves and étale spaces.

Corollary 4.4. The category of sheaves on X is a reflective subcategory of
presheaves on X, with the reflector (called sheafification) given by ΓΛ.

Remark 4.5. In particular, Corollary 4.4 tells us how to construct limits and colimits
in the category of sheaves. First, limits and colimits in presheaves (or any other
functor category) are constructed objectwise (see [Rie16], 3.3.9). Limits in a reflective
subcategory are created by the inclusion map, and colimits are formed by applying
the reflector to the colimit constructed in the parent category (see [Rie16], 4.5.15).
In our case, limits in sheaves are defined taking limits on each open set; colimits
are defined by first taking colimits on each open set (which doesn’t always form
a sheaf), then sheafifying. This phenomenon often causes limits to be more well
behaved than colimits when dealing with sheaves — for instance, the global sections
functor is left but not usually right exact, prompting the study of sheaf cohomology.

5. Useful Consequences

Corollary 5.1. The following are equivalent ways to describe a morphism of sheaves
over X:

(a) A natural transformation h : F → G;
(b) A map of bundles Λh : ΛF → ΛG over X;
(c) A family hx : Fx → Gx of functions between stalks at each x ∈ X such that

for all U ∈ OpX and all s ∈ FU , the function x 7→ hxṡx from U to ΛG is
continuous.

Proof. The correspondance between (a) and (b) is given by the equivalence in
Corollary 4.3. In particular, the image of a natural transformation h : F → G under
Λ is given by the canonical map between coends∫ OpX

FU · U FU · U U

∫ OpX
GU · U GU · U U

∃! hu·U

ιs

ιhUs

⇐⇒
ΛF U

ΛG

∃!Λh

ṡ

˙hus

which sends a germ [U, s]x ∈ ΛF to [U, hUs]x ∈ ΛG.
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The equivalence between (b) and (c) is obtained through the universal property
of ΛF . A function of sets

(
ΛF =

∐
x∈X Fx

)
→ ΛG is equivalent to a set of functions

Fx → ΛG, and the preservation of bundle maps over X translates to the fact that
the component maps restrict to Fx → Gx. The continuity condition is again given
by the universal property of the strong topology. □

This corollary illustrates the local nature of sheaves: morphisms of sheaves are
determined by the induced mapping on stalks, which we can think of as “infinitesimal”
data around each point. This viewpoint is emphasized in the following convenient
result.

Proposition 5.2. A map of sheaves is a monomorphism (resp. epimorphism) if
and only if it induces an injection (resp. surjection) on all stalks.

Proof. See [MM94], Proposition II.6.6. □
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