Braidings on Non-Split Tambara-Yamagami Categories over the Reals

Yoyo Jiang

Joint with David Green and Sean Sanford

March 9, 2024

Introduction

Introduction

- Categories
- ► Fusion Categories / Tambara-Yamagami Categories
- ► Split Case (Example Computation)
- ▶ Non-Split Case: Real-Quaternionic

Categories

Idea: Mathematical objects and maps between them

Sets and functions

- Vector spaces and linear transformations
- Groups and group homomorphisms
- Rings and ring homomorphisms
- ► Topological spaces and continuous functions

Categories

objects	${\sf a},{\sf b},{\sf c}\in\mathcal{C}$	
morphisms	$(a \stackrel{f}{\rightarrow} b) \in \mathrm{Hom}(a,b)$	
identity	$\exists (a \xrightarrow{id_a} a) \in \mathrm{Hom}(a,a)$	
composition	$\forall (a \xrightarrow{f} b) \ \forall (b \xrightarrow{g} c) \ \exists (a \xrightarrow{g \circ f} c)$	
associativity	$\forall (a \xrightarrow{f} b \xrightarrow{g} c \xrightarrow{h} d) (hg)f = h(gf)$	
unitality	$\forall (a \xrightarrow{f} b) \implies f \operatorname{id}_a = \operatorname{id}_b f = f$	

String Diagrams

Categories

String Diagrams (Continued)

Categories 000

Fusion Categories

Idea: "categorified" rings

Ring R	Fusion Category ${\cal C}$	
R set, elements $a, b, c \in R$	objects $A, B, C \in ob(C)$	
N set, elements $a, b, c \in N$	morphisms $A \xrightarrow{f} C$, $B \xrightarrow{g} D$	
sums $a+b$	direct sums $A \oplus B$	
products $a \times b$	tensor products $A \otimes B$, $C \otimes D$	
products a × b	$(functor)\ A \otimes B \xrightarrow{f \otimes g} C \otimes D$	
associativity $(ab)c = a(bc)$	<u>associators</u>	
associativity $(ab)c = a(bc)$	$(A \otimes B) \otimes C \xrightarrow{\alpha_{A,B,C}} A \otimes (B \otimes C)$	

(Defn: A fusion category is a rigid finite semisimple linear monoidal category.)

Pentagon Axiom

Fusion Categories

Q. How to tensor four objects? (In rings, ((ab)c)d = (a(bc))d = a((bc)d) = a(b(cd)) = (ab)(cd) =: abcd) In fusion categories, two ways to go between ((AB)C)D to A(B(CD)) (omitting \otimes s):

(continued on next slide)

Pentagon Axiom

Fusion Categories

Q. How to tensor four objects?

We require them to be the same (diagram commutes).

String Diagrams (Con't)

Fusion Categories

We denote tensor products on string diagrams by stacking boxes horizontally:

$$\forall (A \xrightarrow{f} C), \ \forall (B \xrightarrow{h} D), \ \forall (A \otimes B \xrightarrow{k} C \otimes D), \ \text{we write}$$

$$f \otimes h = egin{pmatrix} C & D \\ | & | \\ f & | \\ A & B \end{pmatrix}$$

Fusion Categories

Idea: Categorifying commutativity

Definition: A *braiding* on a fusion category \mathcal{C} is a (natural) set of isomorphisms $c_{X,Y} \colon X \otimes Y \xrightarrow{\cong} Y \otimes X$ for all objects $X,Y \in \mathcal{C}$, denoted as

satisfying the following conditions: (continued on next slide)

Braidings

Fusion Categories

Definition: (continued) 1) hexagon axiom

Braidings

Fusion Categories

and 2) inverse hexagon axiom

Tambara-Yamagami Categories

Fusion Categories

Idea: Categorifying "near-group" rings

Let G be a finite group. The *(split) Tambara-Yamagami fusion category* has $G \sqcup \{m\}$ as a set of simple objects ("basis"), and objects are generated under finite direct sums. The tensor product is defined on simples: (for all $a, b \in G$)

$$a\otimes b=ab$$
 , $a\otimes m=m=m\otimes a$, $m\otimes m=\bigoplus_{c\in G}c$,

as \otimes distributes over \oplus (these are called "fusion rules").

Split vs. Non-Split

Fusion Categories

(Helpful fact: fusion categories are linear, i.e. Hom's are vector spaces over \mathbb{F} .)

Definition: A simple object $X \in \mathcal{C}$ is *split* if $\operatorname{End}(X) := \operatorname{Hom}(X, X) \cong \mathbb{F}$. Otherwise, it is non-split. A category is split if all of its simple objects are.

Project

Our project aims to construct this "pushout" diagram:

[Sie00]: Braided Split TY (AC) ------> Project: Braided Non-split TY over $\mathbb R$

Strategy, briefly

- 1. Pick "basis" for category: objects are finite direct sums of simple objects; morphisms look like "matrices"
- 2. Schur's lemma: tells me what morphisms are between simple objects
- 3. Yoneda lemma: examine morphisms by looking at effects of precomposition, which are *linear maps* between Hom spaces
- 4. Pick bases for Hom spaces and compute

Classification of Associators

Split Case

Theorem: [Tambara-Yamagami '98] Any split TY category is determined by a triple (G, χ, τ) , where G is a finite group, $\chi \colon G \times G \to \mathbb{R}^{\times}$ is a nondegenerate symmetric bicharacter, and $\tau \in \{\pm^1/\sqrt{|G|}\}$. Associators can be explicitly constructed:

Bases for Hom's

Split Case

(continued) where trivalent vertices denote a set of fixed basis vectors:

Braiding Coefficients

Split Case

Yoyo Jiang

Split Case

(Top path, hexagon 6)

Split Case

(Top path, hexagon 6)

Split Case

(Bottom path, hexagon 6)

Example Computation - Result

Split Case

$$\sigma_3(b)\chi(a,b)$$
 $\begin{pmatrix} b \\ ab \\ m \end{pmatrix} = \sigma_3(ba)\sigma_2(a)$ $\begin{pmatrix} b \\ ab \\ m \end{pmatrix}$

Linear independence:

$$\sigma_3(b)\chi(a,b)=\sigma_3(ab)\sigma_2(a)$$

Do this fifteen more times to get: (con't on next slide)

Hexagon Equations

Split Case

Hexagon axioms \iff sixteen hexagon equations \iff six reduced equations:

$$\sigma_0(a,b) = \chi(a,b),\tag{1}$$

$$\sigma_1(a)^2 = \chi(a, a), \tag{2}$$

$$\sigma_1(ab) = \sigma_1(a)\sigma_1(b)\chi(a,b), \tag{3}$$

$$\sigma_2(a) = \sigma_1(a), \tag{4}$$

$$\sigma_3(1)^2 = \tau \sum_{c \in \mathcal{G}} \sigma_1(c), \tag{5}$$

$$\sigma_3(a) = \sigma_3(1)\sigma_1(a)\chi(a,a). \tag{6}$$

Equation (2) tells us that $\chi(a,a) > 0$ for all $a \in G$, since $\sqrt{-1} \notin \mathbb{R}$.

Classification of Braidings

Split Case

Equation (2) tells us that $\chi(a, a) > 0$ for all $a \in G$, which places a big restriction on χ ([Wall '63]), leading to the following classification.

Theorem: [J.] Any split TY category over \mathbb{R} that admits a braiding is equivalent to $\mathcal{C}(K_A^n, h^{\oplus n}, \tau)$, where K_A denotes the Klein four-group, h denotes the hyperbolic pairing on K_4 , $\tau \in \{\pm 1/2^n\}$, and $n \in \mathbb{N}$.

Classification of Braidings

Split Case

If we also consider the restriction

$$\sigma_3(1)^2 = \tau \sum_{c \in G} \sigma_1(c),$$

we have a classification of the solutions to the hexagon equations (the braidings), as well as a classification up to (monoidal) equivalence:

There are two non-equivalent braidings on $C(K_4^n, h^{\oplus n}, \tau)$.

Non-Split Cases

For all simples $X \in \mathcal{C}$, $\operatorname{End}(X)$ is not necessarily the ground field \mathbb{R} , but we have the following:

- ▶ Lemma (Schur): $\operatorname{End}(X)$ is a division algebra over $\mathbb R$
- lacktriangle Theorem (Frobenius): Finite dimensional division algebra over $\mathbb R$ is $\mathbb R,\mathbb C$,or $\mathbb H$
- ► Results from [Plavnik-Sanford-Sconce '23]:
 - $\operatorname{End}(g) \cong \operatorname{End}(1_G)$ for all $g \in G$;
 - $\operatorname{End}(1_G)$ is commutative;
 - $\operatorname{End}(1_G) \subseteq Z(\operatorname{End}(m))$

Non-Split Cases

$\operatorname{End}(1_G)$	$\operatorname{End}(m)$	Viable?
\mathbb{R}	\mathbb{R}	Split
	H	Case 1
	\mathbb{C}	Case 2
\mathbb{C}	\mathbb{R}	$Z(\mathbb{R})=\mathbb{R}$
	H	$Z(\mathbb{H})=\mathbb{R}$
	\mathbb{C}	Case 3

Case 3 does not admit braidings. We will look at Case 1 for the rest of the talk.

Classification of Associators

Real/Quaternionic Case

The fact that $Z(\mathbb{H}) = \mathbb{R}$ makes the real/quaternionic case feel very similar to the split case.

Theorem: [Plavnik-Sanford-Sconce '23] All real/quaternionic TY categories arise as $\mathcal{C}_{\mathbb{H}}(G,\chi,\tau)$, where G is a finite group, $\chi:G\times G\to\mathbb{R}^{\times}$ is a nondegenerate symmetric bicharacter, and $\tau\in\{\pm 1/\sqrt{4|G|}\}$.

Associators can be constructed using fixed basis vectors: (continued on next slide)

Real/Quaternionic Case

these have an additional nice property: (continued on next slide)

Bases for Hom's

Real/Quaternionic Case

The chosen basis vectors have the following property: we can pass all $h \in \mathbb{H}$ through vertices:

(continued on next slide)

Bases for Hom's

Real/Quaternionic Case

(continued)

$$m$$
 m m m

... but sometimes they get conjugated.

Braiding Coefficients

Real/Quaternionic Case

Yoyo Jiang

Lemma

Non-Split Cases

... but the σ 's actually are all real valued!

Lemma: The function σ_1 is real-valued.

Proof: We want to show that for all $a \in A$ and all $h \in \mathbb{H}$.

$$\sigma_1(a) \cdot h = h \cdot \sigma_1(a),$$

which would tell us that $\sigma_1(a) \in \big(Z(\mathbb{H}) = \mathbb{R}\big)$. (con't on next slide)

Lemma (Proof)

Non-Split Cases

With graphical calculus, we have

Lemma (Proof)

Non-Split Cases

Now, by the definition of σ_1 and naturality, we have

Non-Split Cases

Pass $\sigma_1(a)$ through the trivalent vertex to get

as desired.

Hexagon Equations

Real/Quaternionic Case

The reduced hexagon are as follows (note that (\star) is the only one different from the split case):

$$\sigma_{0}(a,b) = \chi(a,b),
\sigma_{1}(a)^{2} = \chi(a,a),
\sigma_{1}(ab) = \sigma_{1}(a)\sigma_{1}(b)\chi(a,b),
\sigma_{2}(a) = \sigma_{1}(a),
\sigma_{3}(1)^{2} = -2 \cdot \tau \sum_{c \in A} \sigma_{1}(c),
\sigma_{3}(a) = \sigma_{3}(1)\sigma_{1}(a)\chi(a,a).$$
(*)

Real/Quaternionic Case

The classification is very similar to the split case (differences arise in the actual construction of the braidings).

Theorem: [J.] Any real-quaternionic TY category that admits a braiding is equivalent to $\mathcal{C}_{\mathbb{H}}(K_4^n,h^{\oplus n},\tau)$, where $\tau\in\{\pm 1/2^{n+1}\}$. There are two non-equivalent braidings on each of these categories.

- ► Case 2 (Real/Complex): graphical computations produce a set of different equations which involve complex conjugation
- ► Case 3 (Complex/Complex): does not admit braidings but can admit "G-crossed braidings"

- [PSS23] Julia Plavnik, Sean Sanford, and Dalton Sconce. *Tambara-Yamagami Categories over the Reals: The Non-Split Case*. 2023. arXiv: 2303.17843 [math.QA].
- [Sie00] Jacob A. Siehler. *Braided Near-group Categories*. 2000. arXiv: math/0011037 [math.QA].
- [TY98] Daisuke Tambara and Shigeru Yamagami. "Tensor categories with fusion rules of self-duality for finite abelian groups". In: *Journal of Algebra* 209.2 (1998), pp. 692–707. DOI: https://doi.org/10.1006/jabr.1998.7558.
- [Wal63] C. T. C. Wall. "Quadratic forms on finite groups, and related topics". In: *Topology* 2 (1963), pp. 281–298. DOI: 10.1016/0040-9383(63)90012-0.

Thank you!